Computational Quality of Service for Scientific CCA Applications:
Composition, Substitution, and Reconfiguration

Lois Curfman Mcinnes,Jaideep Ray,Rob Armstrong? Tamara L. Dahlgren,
Allen Malony,> Boyana Norris, Sameer ShendeJoseph P. Kenrly and Johan Steenslahd

! Mathematics and Computer Science Division, Argonne National Latgyatayonne, IL 60439 USA
{mcinnes,norris }@mcs.anl.gov ¥
2 Advanced Software R&D, Sandia National Laboratories, LivermBfe 94551 USA
{jairay,jsteens }@ca.sandia.gov
3 Scalable Computing R&D, Sandia National Laboratories, Livermore9@361 USA
{rob,jpkenny }@ca.sandia.gov $
4 Center for Applied Scientific Computing, Lawrence Livermore Natioratharatory, Livermore, CA, 94551 USA
dahlgren1@linl.gov T
5 Computer Science Department, University of Oregon, Eugene, OB3II8A
{malony,sameer @cs.uoregon.edu |

February 2006

Abstract. Component-based design can help manage the complexity of highrparfoe scientific simulations,
where it has become increasingly clear that no single research grawgffectively develop, select, or tune all of the
components in a given application and that no single tool, solver, or sokttiategy can seamlessly span the entire
spectrum efficiently. Component approaches augment the beneditgeat-oriented design with programming lan-
guage interoperability, common interfaces, and dynamic composabilitywOrk addresses the challenge of how
to compose, substitute, and reconfigure components dynamically dherexecution of a scientific application.
The goal is to make suitable compromises among performance, egcorahematical consistency, and reliability
when choosing among available component implementations and paranfetanotivated by high-performance
simulations in combustion, quantum chemistry, and accelerator modeliagéber discusses ideas on computa-
tional quality of service (CQo0S) — the automatic selection and configuraficeraponents to suit a particular
computational purpose. We discuss the synergy between compassad-boftware design and CQoS, with em-
phasis on features of the Common Component Architecture that prinédeundation for this work. We introduce
the design of our CQoS software, which consists of tools for measmteamlysis, and control infrastructure, and
we discuss directions of future work.

1 Introduction

As computational science progresses toward ever morstieatiultiphysics and multiscale applications, the comple
ity is becoming such that no single research group can eféd¢tdevelop, select, or tune all of the components in a
given application, and no single tool, solver, or solutitmtegy can seamlessly span the entire specéfiiciently A
goal of component technology is to help manage this compléyi augmenting the benefits of object-oriented design
with programming language interoperability, dynamic cosgbility, and common interfaces for particular function-
alities [65]. Interchangeable components based on vafiagacteristics such as their underlying models, pratisio
space requirements, execution performance, and retiabidire key features of the vision published in Mcllroy’s 896

 Research at Argonne National Laboratory was supported in paredyldthematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific ComputingeResh, Office of Science, U.S. Dept. of Energy, under
Contract W-31-109-ENG-38.

§ Sandia is a multiprogram laboratory operated by Sandia Corporatiomkaeed Martin Company, for the U.S. Dept. of Energy’s
National Nuclear Security Administration under Contract DE-AC04-983Q000.

¥ Some of this work was performed under the auspices of the U.S. Degatrof Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-EBg-4

I'Research at the University of Oregon is sponsored by contractsGDEB1ER25501 and DE-FG02-03ER25561) from the
MICS program of the U.S. Dept. of Energy, Office of Science.

seminal paper on software components [48]. Common compamtenfaces enable easy access to suites of indepen-
dently developed algorithms and implementations, and miymaomposability facilitates switching among different
implementations during runtime. The challenge then besdmoegv to automatically make sound choices from among
the available implementations and parameters, with deitethdeoffs among performance, accuracy, mathematical
consistency, and reliability. Such choices are importati lfor the initial composition and configuration of an appli
cation and for adaptive control during runtime.

We are addressing this challenge by developing toolcéonputational quality of servicBCQoS) [52], or the
automatic selection and configuration of components tosspdrticular computational purpose. CQoS embodies the
familiar concept of quality of service (QoS) in networking well as the ability to specify and manage character-
istics of the application in a way that adapts to the changimmputational environment. QoS research issues for
scientific component software differ in important ways fromore common QoS approaches that often emphasize
system-related performance effects such as CPU or netwads|to implement application priority or bandwidth
reservation in networking. Although performance is a sthayeneral concern, high efficiency and parallel scalabil-
ity are more significant requirements for scientific compuagalong withfunctional qualities, such as the level of
accuracy achieved for a particular algorithm.

The remainder of this paper is organized as follows: mdtwatcomponent-based design, related work, CQoS ar-
chitecture, preliminary investigations, and conclusidisre specifically, Section 2 introduces three high-perfance
scientific applications that motivate this work: parallartitioning of meshes in combustion simulations, evabrati
of molecular wave functions in quantum chemistry modelsl, e solution of linear systems arising in high-energy
accelerator simulations. Section 3 discusses the syne&tyyelen component-based software design and CQoS and
provides an overview of the Common Component Architect@@€A) [4, 6, 15] — a component model that provides
the foundation for this work and has been specifically desigior high-performance scientific computing. Section 4
describes related work. Section 5 introduces the desiguioCQoS software infrastructure, which consists of two
main groups of tools: (1) measurement and analysis infretstre and (2) control infrastructure. Our preliminary in-
vestigations into adaptive strategies, performance aiglgnd basic interface semantics are described in Se&tion
Finally, Section 7 discusses conclusions and directiorfistafe work.

2 Motivating Scientific Applications

Computational quality of service (CQo0S) can generally lierpreted as the ability of a system to solve a scientific
problem with the best available hardware and software téokcientific computing, “best” has typically meant robust
and fast; the tools are expected to solve problems of va@agees of difficulty consistently, reliably, and efficignt
However, because scientific problems have become incggggiomplex, it is impossible to design a single, efficient
solution strategy that seamlessly spans the entire specfproblems.

Hence, the following techniques are primarily used for iayimg the CQoS of scientific computatioredapta-
tion andmodularization Adaptation typically exploits temporal and spatial pehtspecific features to concentrate
computational resources in critical regions. Althoughmdaon can reduce the computational resources needed for
a given problem to a fraction of static techniques, adapaititroduces a high degree of unpredictable dynamics.
Modularization exploits segregation in coupling — loosetyipled subproblems are identified and solved by efficient,
highly specialized software. Suitable software companéntthe given problem are typically selected and compiled
before the program is executed, so that modularizationnseonly thought of as being static.

Most efficient scientific applications currently use adéptaor modularization. A framework that allows the si-
multaneous use of both techniques is nonexistent as far &nawe But there is a previously unexploited symbiotic
relation between the two. To exploit this symbiosis for impng efficiency and, hence, the CQoS for dynamic scien-
tific problems, we introducemethod adaptatiarDuring decision points of an executing application, theshsuitable
solution technique is dynamically selected and configuskt on the current state of the problem. Solution tech-
nigues can easily be implemented as software modules (op@oents), thereby enabling method adaptation through
dynamic reconfiguratioof the code. This can be accomplished either by dynamicatlyng) configurable parameters
or replacing modules with more appropriate ones. Replanemedules must exist in a component repository and
do not necessarily need to be instantiated during the bimjrof a given simulation. Such an on-demand strategy
dispenses with the need to collate all available softwaiee ansingle huge and difficult-to-maintain library. Further
more, this piecemeal approach to adaptation is scalabkerinstof the number and variety of modules that can be
accommodated in such a manner.

Previous work [10,55,64,67] suggests that it is indeediptest develop a divide-and-conquer approach that uses
CQosS for composition, substitution, and reconfigurationafhponents within long-running simulations. In Section 5
we introduce ideas for such software infrastructure, wioeireapproach leverages related work (e.g., [28, 44]) when
appropriate. We suggest how to apply these tools to threetsiat simulations, the details of which are very different
Part of our research is to identify the common as well as tipdicgtion-specific aspects of these problems as a first
step toward designing a strategy that will make CQoS-edatifaulations of the three problems a reality.

Three parallel scientific applications that motivate tldsaarch represent different computational science disci-
plines and involve either partitioning, resource managen® linear solvers. This section describes each and men-
tions our associated plans.

Partitioning meshes in combustion simulations. The Computational Facility for Reacting Flow Science [38hded

by the U.S. Department of Energy’s Scientific Discovery tiylo Advanced Computing (SciDAC) initiative [68], is
developing a CCA toolkit for simulating flames on block-stured adaptive meshes. For large and realistic sim-
ulations executed on parallel computers, the mesh is jpatid and distributed across processors. Unfortunately, n
single partitioning algorithm is suitable for all compugerd application states [62]. A meta-partitioner [64] sEdemnd
configures the most suitable partitioner based on systenajplitation state. In this context, the dynamic selection
of partitioning algorithms for improving scalability cesponds to method adaptation. Instant mesh characterizati
[63, 64] and rigorous partitioner characterization witepect to partitioner parameters [37] allow for a mapping be-
tween application state and partitioner configurationc&ithe adaptive mesh changes as the simulation evolves, this
mapping is performed repeatedly. To implement the metttioaier, we envision encapsulating each partitioner in a
software component and then dynamically switching thesepoments automatically based on the application state.

Resource management in quantum chemistry simulationsQuantum chemical computations typically involve mul-
tiple subproblems [41], each of which places significant @eds on system resources. The predominant methods for
molecular wave function determination require the comiparteof large numbers of integrals over atom-centered basis
functions, followed by the optimization of coefficients forming molecular orbitals from these atom-centered func-
tions. A typical resource competition arises in this casanamory must be partitioned between the atomic integral
computation, where the storage of intermediate quantiédaces computational effort, and the molecular orbital de
termination, where the storage of previous coefficientasc$peeds the convergence of iterative procedures. Tp date
resource distribution has been statically defined by the piser to execution of the task, requiring an experienced
user who can make accurate estimates of resource demanddative: performance costs. Clearly, the consequences
of reliance on the end-user for resource distribution aveefocomputational efficiency and lost processor cycles.
The addition of dynamic resource adaptation to our existimgponent modules will regain lost system time and en-
able the automation of large numbers of tasks, as requiredrplex multiscale simulations, while maintaining high
computational efficiency.

Solving linear systems in high-energy accelerator simuléins. Solving linear algebraic systems of equations often
dominates the overall execution time of large-scale sitiaria based on partial differential equations (PDESs) udel

ing some facets of accelerator modeling. In this contextpE@@cuses on selecting and configuring parallel linear
solver components [60] under development by the Terasqatien@ PDE Simulations (TOPS) project [17], based on
the context of the overall simulation and the propertiehefdoefficient matrix that defines the linear system. Because
the properties of linear systems in time-dependent andfolimear applications may significantly change during the
course of a given simulation, CQoS-enabled adaptive mettiod solvers have promise to improve robustness and
reduce overall time to solution [10, 11, 50]. Our approach leverage related work by Eijkhout and Fuentes [28] on
matrix characterization and metadata and by Bhowmick ¢8bn machine learning.

Because these problems appear to have little in common, peceihe logic involved in characterizing them and
choosing efficient solution strategies to be vastly différélowever, we believe that thefrastructurefor analyzing
and characterizing each problem (the mesh, molecular waggbn computation, and linear system) and determining
and invoking solution strategies will indeed be similarisithis (conjectured) separation logic andinfrastructure
that we seek to verify in this work and, if verified, exploiteénable CQoS in these very different problems.

3 CQoS and Component-Based Software Design

Complexity generally succumbs to modularity; being ablielémtify loosely coupled subproblems allows the focusing
of targeted strategies to a particular problem instancmefimes, individual strategies may be combined into génera
ones whose behavior may be made to vary continuously in apdra fashion. This realization has ledltoraries
that embody various tools and algorithms to address a péaticlass of problems, with each being appropriate for
problems of a given type. However, the library approach igldy approaching its limits of applicability for two
reasons:

1. Maintaining a collection of algorithms and tools underirage roof poses a daunting challenge and is not a
scalable approach if the bulk of contributors are transiefitborators.

2. The choice of algorithm/tool to use for a given problentanse is typically left to the user (often, not an expert
in the field), who invariably chooses the most reliable, dffitient, approach.

Each problem can place a significant hurdle to addressingittteof scientific questions that ultrascale computing
can enable.

The first problem has a conceptually simple solution: irdstgfaa monolithic approach, one maintains a “stable” of
algorithms, individually implemented as independent crpgomponents. Component-based software architectures
can reliably enable such an approach. Further, many compdased architectures allow adaptive or dynamic re-
composition of codes during runtime so that componentssetdd to the problem at hand can be loaded to replace
or reconfigure the current solution infrastructure. Thtdiee simply and elegantly solves the problenbohgingin
the tools best suited to the proble@hoosingthe appropriate tools (or an appropriate set of parametarsrifigure
a general tool) thus becomes the main hurdle to fashioningpardic and adaptive strategy. The choice will typically
be made predicated on accuracy, stability, efficiency, dopmance—— tangible metrics that can be melded into ob-
jectives forcomputational quality of servicQoS). CQoS addresses the question of formulating andriagi the
control systenthat makes the choice, with suitable tradeoffs among padorce, accuracy, mathematical consistency,
and reliability.

The potential of CQoS is not without challenges. Parallelcexion affects all criteria in component-dependent
ways. Understanding the relationships is difficult, as mesenting this knowledge in some form. Dynamic CQoS
implies a dynamic awareness of computational state andigmadistory. Runtime observation must be implemented
in some manner and necessarily results in (nonfunctionadjhead in the computation, imposing a computational
performance tradeoff that may or may not be important deipgnsh objectives. These problems are difficult enough
from the perspective of a single component. Understandingponent compositions and full multicomponent appli-
cations is significantly more complex. The optimizationlgemn is intractable, in general. However, the approach of
component-based software development makes CQoS cobleeiVhat is, the framework used for component devel-
opment, composition, application construction, and etieniprovides an architecture for CQoS engineering. Thus,
we can design tools that support CQoS implementation, teatasistent with the component software methodology
and may even be implemented by using component technologjyelfollowing, we discuss goals and approaches for
such CQoS tools that we are developing.

The Common Component Architecture. Our work employs the Common Component Architecture (CCA§[45],
which has been designed specifically for the needs of parsatlientific high-performance computing in response to
limitations in this domain of other, more widely used comgohapproaches. A comprehensive description of the
CCA, including a discussion of how it differs from other coomgnt models, is available [6]; here we present a brief
overview of the CCA environment, focusing on the aspectstmabsvant to CQoS infrastructure.

The specification of the Common Component Architecture Hefines the rights, responsibilities, and relation-
ships among the various elements of the model. Briefly, thmehts of the CCA model are as follows:

— Componentsire units of software functionality that can be composeéttogy to form applications. Components
encapsulate much of the complexity of the software insidaektbox and expose only well-defined interfaces.

— Portsare the abstract interfaces through which componentsaictteBpecifically, CCA ports provide procedural
interfaces that can be thought of as a class or an interfagiej@tt-oriented languages, or a collection of subrou-
tines, or a module in a language such as Fortran 90. Compomeat provide ports, meaning that they implement
the functionality expressed in a port (callpgvidesports), or they may use ports, meaning that they make calls
on a port provided by another component (calisésports).

— Frameworksmanage CCA components as they are assembled into appieatial executed. The framework is
responsible for connectingsesand providesports without exposing the components’ implementatioraitiet
The framework also provides a small set of standard sertagsre available to all components. Several frame-
works that implement the CCA specification and support varicomputing environments have been developed.
Ccaffeine [1] is used by the applications discussed in 8e@i

The CCA's general port mechanism, along with various spepifirts, make it possible for us to address these
CQoS issues. In particular, CCA-defined service ports, ag€lonnectionEventService , BuilderService ,
andAbstractFramework , are required of all framework€onnectionEventService notifies components
when connections are made and brokeumilderService andAbstractFramework provide a means to pro-
grammatically assemble and modify applications (instaetand destroy components, make and break connections
between ports) and a means for arbitrary code to become a @&@#eWork. These services allow dynamic monitoring
and control of component applications by CQoS infrastmggtfor example, enabling the implementation of control
components that swap application components based on Capui®idaws [33,52].

4 Related Work

Adaptive software for scientific computing is clearly anaaoé emerging research, as evidenced by a number of recent
projects and related work [13, 16, 22-25, 27, 28, 32, 38,3%4, 47,57,59, 61, 66, 69-73, 77]. In general, support
for assembly, substitution, and reconfiguration requihesitlentification of relevant characteristics of composent
and assessment of application behavior at runtime. Thegionacessitates the availability of higher-level semantic
information that is machine processable; the latter regisome form of runtime monitoring. This section summarizes
a number of efforts from the literature that address one tr bbthese issues.

Three approaches of interest for specifying semantic imé&tion are models, contracts, and service-level agree-
ments. Furmento et al. [30] as well as Gu and Nahrstedt [Fdudis performance models and their use in overall
component application assembly at runtime within the odragédistributed environments; Beugnard et al. [7] define
a general model of software contracts and discuss appredchemaking components contract-aware. Similarly, the
SAMcode model of adaptable mobile agents [2] allows theifipation of contracts — consisting of one precondition
and one postcondition — for each adaptable method. Vialatere used to select between different implementa-
tions of a method at runtime. The GlueQoS work of Wohlstadteal. [76] focuses on mediating quality-of-service
requirements — specified as assertions — between clientd\afidservices. Bennett et al. [5] discuss the need
for service-level agreements for defining the terms and itiond of use, with agreements providing a minimum of
coupling between components. They also emphasize the famumar of characterizing relevant component features
to ensure both the correct use and provision of serviceg &agl. [54] describe a QoS framework for distributed,
heterogeneous components and provide a catalog of QoScmEt#l]. The Software-Implemented Fault Tolerance
(SIFT) environment for Adaptive Reconfigurable Mobile Gitfeof Recovery (ARMOR) processes [74] relies on
their model for functional reconfiguration to adjust apation behavior to meet dependability requirements. In this
case adaptation is accomplished through user-specifiedtiasschecks at critical execution points and the use of
microcheckpointing to adjust application state accorlgirig addition, Loyall et al. [45] use semantic information
distributed object systems. Hence, the usefulness of repdehtracts, and service-level agreements mechanisms for
defining component and application semantics has been dgrated in a variety of contexts.

Relevant techniques for runtime behavioral monitoringleaxirectly or indirectly dependent upon events. Reiner
and Pinkerton [56] explore dynamically changing contralgpaeters to improve operating system performance and
use experiments to determine improved settings. They deweiethodology for adaptive tuning as well as algorithm,
policy, and (fixed) parameter selection. Whisnant et al. féfjj on human intervention to deal with reconfiguration
after a problem is detected at runtime. Feather et al. [28)¢ever, use event monitoring of behavioral deviations and
changing environmental conditions to reconcile the inéehslystem behavior with individual requirements at runtime
In these cases, monitoring an application at runtime iremlehecking control parameters and monitoring events,
including application failure.

Unlike these efforts, our approach relies on high-levedrifdice specifications and technologies tailored for sci-
entific computing. Quality-performance tradeoffs for piatascientific simulations will be made using the Common
Component Architecture (CCA). Because the glue that binda Components together is a set of common, agreed-
upon interfaces, multiple component implementations @oning to the same external interface standard are interop-

erable. The common interface specifications provide thébiléy to accommodate different algorithms, performance
characteristics, and coding styles in multiple implemgoies.

5 CQoS Software Architecture

This section describes the design of the CQoS softwaresinéreture and examines implementation approaches for
the principal subsystems. Figure 1 illustrates our visibhaw CQoS infrastructure will help to analyze, select, and
parameterize components for the motivating applicatiotr®duced in Section 2. This diagram shows the two main
facets of our CQoS tools: (heasurement and analysis infrastructusdich combines performance information and
models from historical and runtime databases along witdrattive analysis, including statistical analysis andhmree
learning technology (further discussed in Section 5.1y @) control infrastructure which encompasses decision-
making components that evaluate progress based on dopeifis heuristics and metrics, along with services for
dynamic component replacement (further discussed in @eéti2). These two groups of CQoS tools, which may
be employed both for initially composing an application &adruntime control, are largely decoupled and interact
primarily through a substitution assertion database.ifimhry research that has led to this approach is discussed
in [33,46,52,55,67].

Control Infrastructure
Interpretation and execution of control laws to
modify an application’s behavior

Analysis Infrastructure
Performance monitoring,
problem/solution characterization,
and performance model building

Instrumented
Component
Application Cases

Control System
(parameter changes and
component substitution)
I ~

CQoS-Enabled
Component Application

Component
Substitution Set

on substitution and

Scientist can
provide decisions
reparameterization

Substitution
Assertion
Database

Performance
Databases
(historical & runtime)

1
1
1
1
1
1
i
Interactive Analysis | :H:l
and Model Building 1
1
1
1
1
1
1
1

e Component A
Scientist can
analyze data Component C
interactively l:l

Fig. 1. Overview of CQoS infrastructure.

At the very outset, we realize that a CQoS-enabling contystesn for high-performance scientific computing
must adhere to two constraints:

1. Enabling CQoS in a given component-based scientific egidin cannot require extensive changes to the code.
In fact, anything more than trivial changes may render tlierefinpalatable to most application teams. Many
scientific components hawsensorsvariables that characterize the current performance oigonent (for ex-
ample, the number of iterations taken to solve a linear sysfieen a desired error) arattuators configuration
parameters that can change the behavior of a componenkémyde, a preconditioner that the solver might use).
Enabling CQoS might, at most, require that such sensors@nétars be exposed in a CQoS-blessed way. Note
that this terminology is borrowed from [44].

2. CQoS has to be enabled in a strictly additive manner; shat given component assembly comprising a scientific
simulation may be augmented with a CQoS-enabling compadoemting the advantages of CQoS to bear. If a
CQoS-enabled scientific simulation is shorn of its CQoSs8ng components, however, the code should still
function and provide correct results, if at a lower efficignc

In addition, our CQoS system will not impose restrictionstiog types of tools used for instrumentation or mea-
surement, algorithms for decision making, or mechanismsyidtching between components. We will define the flow
of events when CQoS ports are connected, the mechanismsnfongnicating the need to run an optimizer at a given

instance, and the way the decisions made by an optimizentieted by those components that are connected to
its CQoS port. In short, our CCA effort will assist in definitige protocol for interactions with the CQoS substrate
and ways to automate the creation of CQoS-aware compongeirdres.

5.1 Measurement and Analysis Infrastructure

As shown in Figure 2, infrastructure for measurement andyaisasupports the collection of performance data and
subsequent processing through statistical analysis amtiinglearning techniques for the purpose of creating per-
formance models for key components. The performance madelssed to develop application-specific control laws,
which are stashed in a substitution assertion databasdnanciployed by the complementary CQoS control infras-
tructure, as discussed in Section 5.2.

Application | | Performance- | | Component
Driver Related Proxy P

Scientist
t Logger Measurement gz?aanalyze
Component N .
interactively

Interactive
Analysis

Verification
& Validation

Performance

Databases
(historical & runtime)

Modeling C lterative :
Information nalysis and
(metadata, Model Building
models, viz)
Machine
Interface to Control I‘nfrastructure Learnlng

Fig. 2. CQoS analysis infrastructure, which interfaces to the complementar€Qurol infrastructure primarily via a substitution
assertion database.

Substitution
Assertion
Database

Performance measurement.The input to the analysis consists of performance measuntsiradong with application-
specific problem characteristics and metrics. This datibeitollected by using the TAU [58] performance system to
generate performance monitoring proxies for componeaiting advantage of fully automatic instrumentation at the
component interface level, at the message-passing lewaéhvdhin each component. In addition, application-specifi
metrics can be monitored by TAU’s user event mechanism. fbiistic view of performance data will facilitate
assessment of an application’s performance charactsritiany point during execution.

A performance database will store performance data gatifesen prior executions, or trials, of the application.
The metadata for a trial will include fields describing thetigalar machine, compilation parameters, application-
specific runtime parameters, and any other relevant paesisiiat describe a unique application instance. We will use
TAU’s PerfDMF [34] database format to store and access pedace data. A performance knowledge component
will provide interfaces for querying historical perforn@ndata.

Performance analysis.The analysis portion of the CQoS infrastructure will useghgformance database to discover
significant performance features of applications by usitagistical analysis and machine learning tools. We will
employ PerfExplorer [35], which provides a single commaeiiface to different general-purpose tools, including the
R system [36], WEKA [75], and Octave [26], and will be extenaath more tools in the future.

Performance models. Generating component modeling information is an imporfzart of the CQoS effort. The
objective is to translate information about a componeriimputational properties, as may be captured in analytical
models and empirical observations obtained from paramexperimentation, into predictive CQoS models that can
be used to evaluate CQo0S expectations (assertions on tQ@oS state) and direct control decision (assertions on
future CQoS state).

1. In ananalytical approachmetrics describing a given type of problem are computed foarticular instance. For
example, this approach may be used in the selection ofipasits; an incoming mesh (actually, a block-structured
adaptive mesh) is evaluated for its “partitionability” fimad-balancing and communication, and a partitioner is
selected and configured accordingly [37, 63, 64]. Similarlwie under way for the characterization of linear
solvers [8].

2. In anempirical approachthe performance of various components is continuouslyitmi@d and checked against
an “accepted” norm. This approach is employed when varioygementations are equally acceptable (from
mathematical and scientific points of view), and the chascmade based on performance, such as the suitability
of a particular algorithm to the problem at hand (which in tr&imulations evolves in time), the suitability of
an implementation of the algorithm to the machine architestand so forth. In such cases, one has to define
a baseline performance and codify it in a performance madeikh is then used as the norm. Any significant
deviations from the norm trigger the control law and a modifan of behavior [55]. This work builds on our work
in performance data mining, implemented by the PerfExplivaenework, which supports cluster, correlation, and
comparative analysis techniques.

The knowledge represented in the CQoS models, as derivadtfre analytical and empirical analysis, should
be as robust as possible to provide good predictive powealsotas compact as possible to be quickly evaluated
during execution. The CQoS models will be stored in the suitisin assertion database for later use as part of an
application-specific control law, which is further discedsn Section 5.2.

5.2 Control System

The role of the control subsystem of the CQoS architectuieésaluate progress based on domain-specific heuristics
and to provide mechanisms for dynamic component (re)cordigun or replacement. CQoS addresses the question
of formulating and designing theontrol systenthat delivers the required performance, while maintairdrgyitable
compromise among performance, accuracy, consistencyiadnustness. We consider this as a sum of two loosely
coupled parts:

1. acontrol lawthat characterizes the problem presented to it and choasetahle tool to deal with it, and
2. acontrol infrastructurethat implements the dictates of the control law.

Control laws. Control laws are the core of the control system. Each cotésel as developed during the perfor-
mance analysis phase introduced in Section 5.1, is in cludrgearacterizing a problem, characterizing the elements
it manages, and establishing a mapping between the two. Yé&cerach control law to be tied (in the mathemati-
cal, not the software sense) to the elements (algoritholsjtthat it manages (e.g., the mesh partitioners, molecula
wavefunction computations, and linear solvers introddoedhe motivating scenarios in Section 2). Because we en-
vision that the component codes will be dynamically recanfigle, the elements that a control law manages will not
generally be available for querying at runtime; thus, thieimation will have to be externally available. While this
situation requires an abstract categorization of the aisrizeing managed (e.g., a linear solver may be able to handle
nonsymmetric systems with a moderate spectrum of conditimnbers), it also enables the control law to exist as an
independent entity in a substitution assertion databaset@duced in Section 5.1.

The control law’s net output will be recommendations abgpirapriate tools to be used; implementing the recom-
mendation is left to the control infrastructure. Such reoc@ndations may range from merely modifying parameters
in a currently instantiated tool/algorithm/component titright replacement of components. In a parallel contaxt, o
right replacement of components will require a global vidwhe problem, thus incorporating elements of the parallel
machine’s configuration and characteristics in the degiprocess. Also, more generally, the control law will have to
embody some degree of closed-loop feedback to maintaiiligtaBimilar issues in recommender systems have been
addressed by Houstis et al. [32].

Control infrastructure. Figure 3 depicts an overview of our approach for controlasfructure, which has the func-
tion of implementing the control law in component-basedvgafe. We view the control infrastructure as a collection of
components “decorating” a component-based scientificlsition to CQoS-enable it. Two key parts arsubstitution
and reparameterization decision serviaed areplacement servicéis introduced in [33], the dynamic replacement
service arranges for the seamless replacement of one cemtpiomplementation by another that provides the same

Component Substitution Set
R Parameter 1
Component Implementation A

Component Implementation B

Proxy | Parameter 1
Generator Component Implementation C
i Parameter 3
Application Component Substitution & Replacgment Abstract
Driver | | Proxy [—|Reparameterization — Service
Decision (provisioning & Framework
deployment)

Scientist can
provide decisions
on substitution and

Service
Characterization
of Problem

Substitution
Assertion

Database reparameterization
(characterization of component functionality
with respect to problem via application- -
provided heuristics and/or machine learning) ‘ Interface to Analysis Infrastructure

Fig. 3.CQoS control infrastructure, which interfaces to the complementary8G@alysis infrastructure primarily via a substitution
assertion database that contains control laws.

functionality but has different performance features. Témacement service, which provisions and deploys the new
component, can be invoked by proxy either on the prograneehest or triggered by the substitution decision ser-
vice. The substitution decision service automates dewsibout component replacement by applying the control law,
which resides in the substitution assertion database arydomaupplied either by an application scientist or by a
machine learning module. A similar approach has been us@#y

We note that the substitution/replacement decision sefitself runs in parallel in the application. Depending on
the component’s CQoS model, local and global managemenatiqes will be performed, for example, to collect and
evaluate current CQoS state, determine global CQoS medndseach a consensus decision on replacement. Figure 4
illustrates this situation.

component CQoS pro

Substituion
Assertion
Database

CQoS Management System

replacement
decisions

Component Application

process
components

Fig. 4. CQosS infrastructure for replacement of components.

5.3 Application Interfaces

A central objective of the design and implementation of tlggoGS infrastructure is to minimize the changes required
for application components to take full advantage of CQg&abdities for monitoring, analysis, and control. In this
section we present an overview of our approach to achietisgbjective.

Component proxy ports. As shown in Figures 2 and 3, proxy components can help in tegydef CQoS-aware
components. A proxy component provides a convenient mésimato interpose performance instrumentation between

ausesand aprovidesport connection between two components. The TAU compomématstructure can generate proxy
components automatically and on the fly by parsing the iaterdefinition or the source code of a component. By
interposing a proxy between a calleiseésport) and a calleepfovidesport), not only can we measure the performance
associated with a port, but we can also tap into a wealth dicgtipn-level information, such as method arguments
that flow through the caller-callee edge of a component ¢ot@mection graph. Moreover, by examining the calling
stack of instrumented components using TAU’s callgrapliilprg, we can deduce the dynamic connections between
components.

Proxy components will be augmented with CQoS tracking andpmment reparameterization/substitution capa-
bilities. When a CQoS port of a proxy is not connected, its valebe restricted to performance instrumentation and
measurement. When a proxy’s CQoS port is connected to an igptimomponent, the proxy will generate events
to activate the performance selection capabilities of fhtnuzer. By reading the choice of an appropriate port on a
CQosS port, the proxy will be able to connect a callersesport to the choseprovidesport. Thus, a proxy will act
as a switch connectingusesport to an appropriatprovidesport at runtime. This switching among components will
need to be coordinated with a global service to ensure tigat#rried out in all contexts of the component assembly.

In this manner, an application composed of CCA componerltd@iCQoS enabled by using proxy components
without any changes to the source code of the individual aomapts. By building the CQoS infrastructure with
reusable components and ports, we will also support theascewhere an application developer decides to build
CQoS-aware intelligent components that do not rely on g®Xiut instead directly connect to a CQoS port of an
optimizer component.

Issues in interface semanticsTo make the vision of interchangeable components a realitgdientific software, we
must take that which is implicit — or in textual documentatie- and make it explicit in a concise, human-readable and
machine-processable form. Hence, an important goal itttiiy and support relevant component interface semantics
for expressing characteristics and constraints neededy/famic adaptation.

This work involves investigating the expressiveness aiitdfsility of general-purpose interface semantics specifi-
cation mechanisms for automated behavioral adaptatids applied across disciplines within computational sogenc
Therefore, we will investigate behavioral and qualitysefvice specifications for issues such as support for dfgori
characteristics and constraints, precision, and resalitguStable attributes can include whether an algoritkrimi-
plicit or explicit, whether the storage order of arrays isteanged through its interfaces, or whether a two-dimemsion
or three-dimensional space is represented. We expecesthhtacteristics such as these to be expressible in an im
plementation language-neutral form, such as the Sciemtificface Definition Language (SIDL) [18], while dynamic
characteristics will require representation in a more filexformat.

We will extend the SIDL/Babel toolkit [18] with constructs éxpress the static information. Preliminary work has
already enhanced the basic syntactic descriptions of tiponent’s application programming interface (API) throug
the addition of nonnegotiable behavioral contracts [2D, 2% will similarly extend SIDL to support the specification
and inheritance of quality metrics and requirements. Fang{e, a general interface for linear system solution may
be annotated with CQoS metrics for execution time and acgufn interface for a specific linear system solution
approach, such as an iterative solver, would inherit the £@etrics from its parent and may define new ones, such
as the number of iterations or desired accuracy. Anotherasheiaint of the general linear solver interface, for example
an interface for direct solvers, would naturally not have tlumber of iterations but may need to specify the cost of
reordering.

Work on interface semantics addresses the need to moreiflyptiefine the behavior and quality of services
in a concise, human-readable and machine-processable limagrating static information into SIDL and dynamic
information into the control infrastructure will enablentime adaptation according to a variety of behavioral and
service quality criteria.

5.4 A CQoS Testbed

To motivate and validate the CQoS infrastructure, we willedlep aCQoS Testbedith key components drawn from
the motivating scenarios introduced in Section 2. Becansagbal of CQoS infrastructure is to be as automatic as
possible without taking away developers’ ability to spgdHe analysis and control decisions, the abstractions that
constitute the infrastructure must accommodate both aatiomand human intervention at every level. During early
phases of this work, a CQoS component or application wiliikrely heavily on specialized code, with increased
automation being incorporated in later phases. We mustealbfith pragmatic and generalizable interfaces for CQoS

10

that meet these requirements. We thus will build a testbedwiponents taken directly from relevant scientific appli-
cations, or reasonable facsimiles of such components égptinpose of experimenting with interface abstractions for
CQosS that will be mainstreamed into application codes.

6 Preliminary Investigations

We next discuss preliminary work that has led to this apgrpaiuding adaptive strategies, performance measure-
ment and analysis, and software quality through contracts.

6.1 Adaptive Strategies

Preliminary work on the development of adaptive stratefpeparallel partitioning and linear solvers partially mot
vates this CQoS research.

Adaptive partitioning. We have employed a CQoS philosophy to improve the scakabilihighly dynamic adaptive
mesh refinement applications. As dynamic and localizedifeatin the solution require higher mesh resolution for
sufficient numerical accuracy, the mesh adapts dynamitalaccommodate this. Parallel implementations of such
adaptive applications present significant challenges radhic resource allocation as the overall efficiency is Euahit
by the ability to partition the underlying mesh at runtimeet@ose all inherent parallelism, minimize communication
and synchronization overheads, and balance load.

No partitioning technique performs the best for all combinas of application and computer system. Even worse,
the best partitioner for a particular time frame of a patali@ulation might be the worst for the next time-frame [62].
Because the basic requirement for a partitioning metho@jpeddent on the size and composition of the mesh, this
requirement changes dynamically as the mesh adapts to liteoao By taking these dynamic conditions explicitly
into account, the scalability for large, realistic simidas can be significantly improved. To meet the challenges in
dynamic resource allocation inherent in parallel adaptivdes, we introduce another level of adaptatiataptive
partitioning, meaning dynamic and automatic switching of partitionieghniques, based on the current run-time
state. The framework allowing this is calledreeta-partitioner

The meta-partitioner is a general framework for implememntidaptive partitioning in scientific, adaptive applica-
tions. It samples the current state of the application aad¢timputer system in real-time and maps these samples onto
a point in a partitioner-centric classification space (PT[6S, 64]. This space is spanned by three axes corresponding
to the three primary trade-offs inherent in the partitignmmoblem: communication vs. load balance, quality vs. dpee
and data migration optimization. The application sampleaised on mathematical properties of the mesh, while the
sample of the computer system is based on current resow@dsavailability. The samples are translated into penal-
ties that determine the location in the PCCS. Based on tlaitot one of the pre-characterized partitioning algonish
is selected and configured. This requires a set of partitiotoebe thoroughly tested and characterized with respect to
input parameters versus output quality metrics such asitobdlance and communication [37]. Our collaborators at
Uppsala University in Sweden are characterizing the algms in the partitioning librarfNature+Fable [62] by
analyzing the complex-metric results from millions of jit@ohed real-world meshes.

Adaptive linear solvers. This research in CQoS has been partially motivated by lacgée scientific simulations
based on partial differential equations [33, 49], with eamih on multimethod linear solvers in the context of pakalle
computational fluid dynamics, including flow in a driven dgvéand compressible Euler flow (see [51] for details).
Both applications employ pseudo-transient continuatidh Wewton methods, where the linearized Newton systems
become progressively more difficult to solve as the simotatidvances due to the use of pseudo-transient continu-
ation [40]. Consequently both are good candidates for tkeofidaptive linear solvers [9, 10, 50] where the goal is
to improve overall performance by combining more robust (bare costly) methods when needed in a particularly
challenging phase of solution with faster (though less pwemethods in other phases. We designed parallel adap-
tive solvers with the goal of reducing the overall executiome of the simulation by dynamically selecting the most
appropriate method to match the characteristics of theenulinear system. A key facet of developing adaptive meth-
ods is the ability to consistently collect and access bottime and historical performance data. We implemented
a prototype component infrastructure that supports pedioce monitoring, analysis, and adaptation of important
numerical kernels, such as nonlinear and linear systeneso[81]. We defined a simple, flexible interface for the

11

implementation of adaptive nonlinear and linear solverriséias. We also provide components for monitoring (based
on TAU), checkpointing, and gathering of performance data.

6.2 Performance Measurement and Analysis

The TAU [58] performance system, particularly as appliegpéoformance engineering technology for component

software, provides a solid foundation for CQoS measurerapdtanalysis infrastructure. Instrumentation and mea-
surement of the performance of parallel applications armdatialysis of multi-experiment performance data make it

possible to characterize the performance for softwaramtsiof a parallel code over a range of runtime and problem
parameters. From this information, models of performanc€fQ0S purposes can be created. However, the quality of
the models strongly depends on the robustness of the pexfmersystem and its integration in a parallel programming
methodology.

In addition to extensions of TAU'’s instrumentation and megament capabilities, two advances in performance
data analysis are important preliminary results. CQoSdépend on the value of performance knowledge obtained.
The Performance Data Management Framework (PerfDMF) [34]developed to provide for management and query
of multi-experiment parallel profile data. PerfDMF enalites population of a multidimensional performance space
from experiments and the analysis across data sets thabl€4@doS model creation. The Performance Explorer (Perf-
Explorer) tool [35] is a performance data mining framewdrkttuses PerfDMF. PerfExplorer supports several analysis
types, including comparative, cluster, dimension reduntand correlation analysis. PerfDMF and PerfExploret wil
provide the basis for developing CQoS infrastructure fafggenance analysis.

The second area of preliminary work reflecting support fooSQesearch and development in CCA is our ex-
tension of TAU for performance monitoring of CCA componeottware [46]. TAU now provides the ability to in-
strument and measure the performance of CCA componentgatidations through a CCA-compatible performance
component with its event creation and measurement inerfatd component measurement ports and proxies [67]. A
CCA performance monitor component and “mastermind” coreporvere created to demonstrate runtime query of
component performance state and modeling [55].

In addition, recent enhancements have been made in TAU'sune@ent system to allow more observation of
functional aspects of a code’s execution. To the extentkiamneasurement infrastructure can manage both functional
and performance data, this infrastructure will be impdrfanthe integration of multiple CQoS metrics.

6.3 Software Quality through Contracts

Additional work has focused on software quality throughtimie verification of basic interface contracts. Semantic
annotations — integrated into the SIDL/Babel languageramerability toolkit [42] — are currently limited to the
specification of constraints on the input and output of mettalls and object properties. Efforts thus far have con-
centrated on exploring the impact on performance and faillatection effectiveness of a variety of traditional and
experimental enforcement heuristics through simulati® And experimentation [19-21].

7 Conclusions and Future Work

This paper discussed some challenges in high-performamobLstion, quantum chemistry, and accelerator simula-
tions, each of which requires a means to compose, subs#indereconfigure software so that tradeoffs can be made
dynamically during runtime among performance, precisiorerlying models, and reliability when choosing among
available component implementations and parameters. Wéglirced our approach to tackling these issues by building
infrastructure for computational quality of service (CQg@8cluding tools for both measurement/analysis and obntr
infrastructure. We also discussed how component-basegrdasd the Common Component Architecture provide a
strong foundation for this work.

Our overall strategy for future work will be based on incremad progress in the design and implementation
of CQoS support, initially with a focus on developing the (Q@stbed introduced in Section 5.4 with simplified
representative cases drawn from the three motivating @tjins and exploring canonical problems. The middle and
later stages of our work will extend to more complicated aapilon scenarios; we will also increase the level of
automation and make CQoS support more generally applitafoiemponent applications.

12

Acknowledgments

This work has been supported in part by the U.S. DepartmeBnefgy’s Scientific Discovery through Advanced
Computing [68] initiative, through the Center for Componh&echnology for Terascale Simulation Software [3]. The
CCA has been under development since 1998 by the CCA Forumeanesents the contributions of many people, all
of whom we gratefully acknowledge. We especially thank Jimukdson, Doug Dechow, Peter Stoltz, and Theresa
Windus for discussing with us the CQoS needs of their sirariatin high-energy accelerator physics and quantum
chemistry.

References

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.
20.

B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and P. WoBeaffeine — a CCA component framework for parallel
computing.http://www.cca-forum.org/ccafe/ , 2003.

. Noriki Amano and Takuo Watanabe. A software model for flexiblé safe adaptation of mobile code programsPtoceed-

ings of the International Workshop on Principles of Software Evolupages 57-61, Orlando, FL, May 2002.

. R. Armstrong et al. Center for Component Technology for Tedas8imulation Softwarehttp://www.cca-forum.

org/ccttss , 2006.

. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. MesyS. Parker, and B. Smolinski. Toward a Common Com-

ponent Architecture for high-performance scientific computingPrioceedings of the Eighth IEEE International Symposium
on High Performance Distributed ComputintP99.

. K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, and/Mnro. Service-based software: The future for flexible

software. InProceedings of the 7th Asia-Pacific Software Engineering ConfererR8E& 200Q)pages 214-221, 2000.

. D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu,LT.Dahlgren, K. Damevski, W. R. Elwasif, T. G. W.

Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl, M. Krishnan, G. Karif J. W. Larson, S. Lefantzi, M. J. Lewis, A. D.
Malony, L. C. Mclnnes, J. Nieplocha, B. Norris, S. G. Parker, J;,Ba Shende, T. L. Windus, and S. Zhou. A component
architecture for high-performance scientific computing. Intl. J. HighkRComputing Appl., in press, 2006.

. Antoine Beugnard, Jean-Marézquel, N&l Plouzeau, and Damien Watkins. Making components contract awgaEE

Computey 32(7):38—45, July 1999.

. S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyeslisption of machine learning to selecting solvers for sparse

linear systems. Presentation at the 2006 SIAM Conference on Paraltedd’ing, San Francisco, CA, February 2006.

. S. Bhowmick, D. Kaushik, L. Mclnnes, B. Norris, and P. RaghavRarallel adaptive solvers in compressible PETSc-FUN3D

simulations. Argonne National Laboratory preprint ANL/MCS-P1288%) 2005. submitted to Proc. of the 17th International
Conference on Parallel CFD, Aug 2005.

S. Bhowmick, L. C. Mclnnes, B. Norris, and P. Raghavan. Bheaf multi-method linear solvers in PDE-based simulations. In
Lecture Notes in Computer Sciengelume 2667, pages 828—839, 2003. Computational Science andglie#pns-ICCSA
20083.

S. Bhowmick, P. Raghavan, L. C. Mclnnes, and B. NorRaster PDE-Based Simulations Using Robust Composite Linear
Solversvolume 20, pages 373-387. 2004.

G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Auguston, B. R. Btyand C. C. Burt. A quality of service catalog for
software components. IRroceedings of the Southeastern Software Engineering Conferetht@. / / www. ndi at vc.

or g/ SESEC2002/ , 2002.

R. Bramley, D. Gannon, T. Stuckey, J. Villacis, J. BalasubramagiaAkman, F. Berg, S. Diwan, and M. Govindaraju. The
Linear System Analyzer. I&Bnabling Technologies for Computational Scieri€kiwer, 2000.

CCA Forum. CCA specificatiomttp://cca-forum.org/specification/ , 2006.

CCA Forum homepagéittp://www.cca-forum.org/ , 2006.

R. Chowdhary, P. Bhandarkar, and M. Parashar. Adapti&r@anagement for collaboration in heterogeneous environments.
In Proceedings of the 16th International Parallel and Distributed Computiymg@sium (IEEE, ACM), 11th Heterogeneous
Computing Workshqg-ort Lauderdale, FL, 2002.

D. Keyes (PI). Terascale Optimal PDE Simulations (TOPS) Cehtir.//tops-scidac.org/ , 2006.

Tamara Dahlgren, Thomas Epperly, Gary Kumfert, and Jarreds Babel User's GuideCASC, Lawrence Livermore National
Laboratory, Livermore, CA, babel-0.9.4 edition, 2004.

Tamara L. Dahlgren. Adaptive enforcement of componentfaterassertions. Draft manuscript, 2006.

Tamara L. Dahlgren and Premkumar T. Devanbu. Adaptablgiassehecking for scientific software components. In Philip M.
Johnson, editoRroceedings of the First International Workshop on Software Engingédor High Performance Computing
System Applications (SE-HPC®pnges 64-69, Edinburgh, Scotland, 24 May 2004. Also available &sehae Livermore
National Laboratory Technical Report UCRL-CONF-202898.

13

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45,

Tamara L. Dahlgren and Premkumar T. Devanbu. Improvingsfieesoftware component quality through assertions. In
Proceedings of the Second International Workshop on Software Ergigeor High Performance Computing System Appli-
cations pages 73-77, St. Louis, Missouri, May 2005. Also available as Lawerkivermore National Laboratory Technical
Report UCRL-CONF-211000, Livermore, CA, 2005.

J. D. de St. Germain, John McCorquodale, Steven G. ParkeGlaigtopher R. Johnson. Uintah: A massively parallel prolem
solving environment. IProceedings of the Ninth IEEE International Symposium on High Perfocmand Distributed
Computing August 2000.

J. D. de St. Germain, A. Morris, S. G. Parker, A. D. Malony, an8l®nde. Integrating performance analysis in the Uintah
software development cycle. Fourth International Symposium on High Performance Computing (ISHBCpages 190—
206, May 15-17 2002.

Jack Dongarra and Victor Eijkhout. Self-adapting numerical soévaad automatic tuning of heuristics. Pmoceedings of
the International Conference on Computational Scie2€83.

Jack Dongarra and Victor Eijkhout. Self-adapting numerical softicr next generation applicationkternational Journal

of High Performance Computing Applicatiqris’:125-131, 2003. also Lapack Working Note 157, ICL-UT-02-07.

John W. Eaton. Octavéttp://www.octave.org

Thomas Eidson, Jack Dongarra, and Victor Eijkhout. Applying @spéent programming concepts to a component-based
programming model. lProceedings of the 17th International Parallel and Distributed ProcegsSiymposium (IPDPS) April
22-26, 2003, Nice, Fran¢c2003.

V. Eijkhout and E. Fuentes. A proposed standard for matrix metad@chnical Report ICL-UT 03-02, University of Ten-
nessee, 2003.

M. S. Feather, S. Fickas, A. van Lamsweerde, and C. PonBadonciling system requirements and runtime behavior. In
Proceedings of the 9th International Workshop on Software Specificatid®esignpages 50-59, April 1998.

N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field Jadarlington. Optimisation of component-based applications
within a Grid environment. IfProceedings of SC2002001.

X. Gu and K. Nahrstedt. A scalable QoS-aware service aggregatdel for peer-to-peer computing Grids. Pmoceedings

of HPDC 2002 2002.

E. N. Houstis, A. C. Catlin, J. R. Rice, V. S. Verykios, N. Ramakrist) and C. E. Houstis. A knowledge/database system for
managing performance data and recommending scientific soft@d. Transactions on Mathematical Softwa?é(2):227—
253, 2000.

P. Hovland, K. Keahey, L. C. Mcinnes, B. Norris, L. F. Diachand P. Raghavan. A quality of service approach for high-
performance numerical componentsPimceedings of Workshop on QoS in Component-Based Software Engméoftware
Technologies Conferencoulouse, France, 2003. Also available as Argonne National L&drgrareprint ANL/MCS-P1028-
0203 viaftp://info.mcs.anl.gov/pub/tech_reports/reports/P10 28.pdf

K. Huck, A. Malony, R. Bell, and A. Morris. Design and implementatifra parallel performance data management frame-
work. In Proceedings of the International Conference on Parallel Proces$®@BR 2005) IEEE Computer Society, 2005.
Kevin Huck and Allen Malony. PerfExplorer: A performance dataing framework for large scale parallel computing. In
Proceedings of SC—0BCM, November 2005.

R. Ihaka and R. Gentleman. R: A language for data analysis apldigsalournal of Computational and Graphical Statistics
5(3):299-314, 1996.

Henrik Johansson and Johan Steensland. A characterizatiorybfid &and dynamic partitioner for SAMR applications. In
Proceedings of 16th IASTED International Conference Parallel andribiged Computing and Systen#CTA Press, 2004.

K. Keahey, P. Beckman, and J. Ahrens. Ligature: A compaoarehitecture for high-performance applicatiofisternational
Journal of High-Performance Computing Applicatio($4), 2000.

Peter J. Keleher, Jeffrey K. Hollingsworth, and Dejan Perkovigplditing application alternatives. 1h9th International
Conference on Distributed Computing Systeh®99.

C. T. Kelley and D. E. Keyes. Convergence analysis of pseaahsigmt continuationSIAM Journal on Numerical Analysis
35:508-523, 1998.

Joseph P. Kenny, Steven J. Benson, Yuri Alexeev, JasorhS@rictis L. Janssen, Lois Curfman Mclnnes, Manojkumar Kr-
ishnan, Jarek Nieplocha, Elizabeth Jurrus, Carl Fahlstrom, an@3dér Windus. Component-based integration of chemistry
and optimization softwarelournal of Computational Chemistr24(14):1717-1725, 15 November 2004.

Lawrence Livermore National Laboratory. Babgtp://www.lInl.gov/CASC/components/babel.html

Benjamin C. Lee, Richard Vuduc, James Demmel, and KatherinekYeterformance models for evaluation and automatlc
tuning of symmetric sparse matrix-vector multiply. Pmoceedings of the International Conference on Parallel Processing
Montreal, Quebec, Canada, August 2004.

H. Liu and M. Parashar. Enabling self-management of compdaesed high-performance scientific applicationsPtaceed-
ings of the 14th IEEE International Symposium on High Performance DigathComputinglEEE Computer Society Press,
July 2005.

J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Spegfand measuring quality of service in distributed object
systems. IrProceedings of ISORC '98998.

14

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.
66.

67.
68.
69.
70.

71.

A. Malony, S. Shende, N. Trebon, J. Ray, R. Armstrong, CnRiasen, and M. Sottile. Performance technology for parallel
and distributed component softwa@oncurrency and Computation: Practice and Experierice117-141, Feb—Apr 2005.
Michael O. McCracken, Allan Snavely, and Allen Malony. Perfamagamodeling for dynamic algorithm selection. Rroc.

of the International Conference on Computational Science (ICCSIOS8ES volume 2660, pages 749-758, Berlin, 2003.
Springer.

M. D. Mcllroy. Mass produced software componentsPtaceedings of the NATO Software Engineering Conferguages
138-155, October 1968. Also availablendtp://cm.bell-labs.com/cm/who/doug/components.txt

L. C. Mclnnes, B. A. Allan, R. Armstrong, S. J. Benson, D. ErrBeldt, T. L. Dahlgren, L. F. Diachin, M. Krlshnan J. A.
Kohl, J. W. Larson, S. Lefantzi, J. Nieplocha, B. Norris, S. G. ParkeRay, and S. Zhou. Parallel PDE-based simulations
using the Common Component Architecture. Nomerical Solution of Partial Differential Equations on Parallel Comput-
ers, pages 327-384. Springer, 2006. Also available as ANL/MCS-P0Y0g- viahttp://www.mcs.anl.gov/cca/
publications/p1179.pdf

L. C. Mclnnes, B. Norris, S. Bhowmick, and P. Raghavan. Adagsparse linear solvers for implicit CFD using Newton-
Krylov algorithms. InProceedings of the Second MIT Conference on Computational Fluid a@igiMechanics, June 17-20,
2003, Cambridge, MAvolume 2, pages 1024-1028. Elsevier, 2003.

B. Norris, L. McInnes, and I. Veljkovic. Computational quality of\dee in parallel CFD. Argonne National Laboratory
preprint ANL/MCS-P1283-0805, 2005. submitted to Proc. of the 17#rhational Conference on Parallel CFD, Aug 2005.
B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E. Bernhdld. R. Elwasif, A. D. Malony, and S. Shende. Computational
quality of service for scientific components. Pnoc. of International Symposium on Component-Based Software &rgig
(CBSE7Y), Edinburgh, Scotlan@004. Also available as Argonne National Laboratory preprint ANLSAE1131-0204 via
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P11 31.pdf

H. Najm (PI). Computational facility for reacting flow science (CFRFf®p://cfrfs.ca.sandia.gov , 2006.

R. Raje, B. Bryant, A. Olson, M. Augoston, and C. Burt. A qualitysefvice-based framework for creating distributed
heterogeneous software compone@encurrency Comput: Pract. Expg14):1009-1034, 2002.

J. Ray, N. Trebon, S. Shende, R. C. Armstrong, and A. Maldmgrformance measurement and modeling of component
applications in a high performance computing environment : A case.stadjroceedings of the 18th International Parallel
and Distributed Computing SymposiuApril 2003.

David Reiner and Tad Pinkerton. A method for adaptive perfoceanprovement of operating systemsPlimceedings of the
1981 ACM SIGMETRICS Conference on Measurement and Methodfl@pmputer Systempages 2—10, September 1981.
Self-Adapting Large-scale Solver Architecture, Bp://icl.cs.utk.edu/salsa , 2006.

S. Shende and A. Malony. The TAU parallel performance systéma.International Journal of High Performance Computing
Applications, ACTS Collection Special Iss&pring 2006.

Shweta Sinha and Manish Parashar. System sensitive runtime ensaratgof adaptive applications. Rroceedings of the
Tenth IEEE Heterogeneous Computing Worksi8am Francisco, CA, 2001.

B. Smith et al. TOPS Solver Componentsttp://www.mcs.anl.gov/scidac-tops/solver-component s/
tops.html , 2005.

M. Sosonkina. Runtime adaptation of an iterative linear system solutidisttibuted environments. |Applied Parallel
Computing, PARA'20Q0/0lume 1947 of ecture Notes in Computer Scienpages 132-140, Berlin, 2001. Springer-Verlag.
J. Steensland Efficient partitioning of dynamic structured grid hierarchie$*hD thesis, University of Uppsala, Uppsala
University Library, Box 510, SE-751, 20 Uppsala, Sweden, 2002.

Johan Steensland and Jaideep Ray. A partitioner-centric mod8AMR partitioning trade-off optimization: Part Il. In
Proceedings of the 6th International Workshop on High Performanéengfic and Engineering Computing (HPSEC-04)
August 2004. Held in conjunction with The 2004 International Confeze@n Parallel processing (ICPP-04), in Montreal,
Canada.

Johan Steensland and Jaideep Ray. A partitioner-centric mod@ARMR partitioning trade-off optimization: Part Interna-
tional Journal of High Performance Computing Applicatiph9:1-14, 2005.

C. SzyperskiComponent Software: Beyond Object-Oriented Programmi@M Press, New York, 1999.

Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. AetiVarmony: Towards automated performance tuning. In
Proceedings of SC02002.

N. Trebon, A. Morris, J. Ray, S. Shende, and A. Malony. Perémce modeling of component assemblies with TAU. Presented
at Compframe 2005 workshop, Atlanta, June, 2005.

U. S. Dept. of Energy. SciDAC Initiative homepadptp://www.osti.gov/scidac/ , 2006.

Jeffrey S. Vetter and Patrick H. Worley. Asserting performanpe&ations. IrfProceedings of SCQ2002.

Richard Vuduc, James Demmel, and Jeff Bilmes. Statistical modetsripirical search-based performance tunilmgerna-
tional Journal of High Performance Computing Applicatipt8(1):65-94, February 2004.

Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSHKibrary of automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 20p3ournal of Physics: Conference Series, San Francisco, CA, W8 2005. Institute of Physics
Publishing.

15

72.

73.

74.

75.

76.

77.

R. Clint Whaley and Antoine Petitet. Minimizing development and main@narcosts in support-
ing persistently optimized BLAS. Software: Practice and Experience35(2):101-121, February 2005.
http://www.cs.utsa.edu/"whaley/papers/spercw04.ps

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automatememnptlmlzatlon of software and the ATLAS project.
Parallel Computing 27(1-2):3-35, 2001. Also available as University of TennesseACKPWorking Note #147, UT-CS-
00-448, 2000ww.netlib.org/lapack/lawns/lawn147.ps).

K. Whisnant, Z. Kalbarczyk, and R. K. lyer. A foundation for ptilee fault tolerance in software. Broceedings of the 10th
IEEE International Conference and Workshop on the Engineering ofiffoer-Based Systenygages 252-260, April 7-10,
2003.

I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools and Techniquddorgan Kaufmann, Second
edition, 2005.

Eric Wohlstadter, Stefan Tai, Thomas Mikalsen, Isabelle Rouvellodi,Paemkumar Devanbu. GlueQoS: Middleware to
sweeten quality-of-service policy interactions. Rroceedings of the 26th International Conference on Software Enggeer
(ICSE '04) pages 189-199, May 23-28, 2004.

K. Zhang, K. Damevski, V. Venkatachalapathy, and S. ParkedR@&n2: A CCA framework for high performance computing.
In Proceedings of the 9th International Workshop on High-Level ParBlfegramming Models and Supportive Environments
(HIPS 2004) Santa Fe, NM, April 2004. IEEE Press. to appear.

16

17

The submitted manuscript has been created by the Unive
of Chicago as Operator of Argonne National Laboratory (“
gonne”) under Contract No. W-31-109-ENG-38 with the U
Department of Energy. The U.S. Government retains for it:
and others acting on its behalf, a paid-up, nonexclusive,
vocable worldwide license in said article to reproduce, pre
derivative works, distribute copies to the public, and perfi
publicly and display publicly, by or on behalf of the Gove
ment.

rsity
Ar-
.S.
elf,
rre-
pare
m
n-

